Abstract

Building-integrated photovoltaic (BIPV) panels are emerging as a useful technology for helping to achieve net-zero energy buildings. At this time, the main drawback with BIPV systems is the cost per kilowatt per hour of electricity generated. Besides cheaper production of photovoltaic panels, increases in their efficiency can be obtained by reducing panel temperatures. This is often achieved by adding a cavity beneath the panels to allow ventilation of the rear of the panel. However, the details of airflow in the cavity and the effect on cooling have not been rigorously researched. Life-time enhancement against degradation is also an effective technique to reduce the cost of electricity generated. Moisture ingress and thermal stresses are among the primary reasons for degradation of BIPVs; these processes are directly affected by air and moisture flow around the panels. The surface temperature thermography and airflow observations performed in this work helps to understand the transport mechanisms above and below the panels. For this purpose, a novel setup was developed consisting of a building model with a mock BIPV panel plus a solar simulator placed inside an atmospheric wind tunnel. Particle image velocimetry (PIV) and infra-red thermography were performed to simultaneously monitor the surface temperature and airflow above and below the panel. The study clearly shows how the accelerated airflow within the cavity increases the heat exchange between the PV and airflow and consequently reduces the PV temperature. It is also shown that the stepped open arrangement of panels is more effective in reducing the temperature comparing to a flat arrangement. This arrangement also has a better resistant against the air and moisture ingress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call