Abstract

An aminophenol, 3-hydroxyanthranilic acid (3-HAA), has been proposed to play important roles in lignin degradation. Production of 3-HAA in Pycnoporus cinnabarinus was completely inhibited by a combination of tryptophan and S-(2-aminophenyl)-L-cysteine S,S-dioxide (APCD) while the fungus grew well and produced high amounts of laccase. The biosynthesis of 3-HAA is mainly through the metabolism of tryptophan in the kynurenine pathway. A minor pathway for 3-HAA synthesis is through the hydroxylation of anthranilic acid during the biosynthesis of tryptophan in the shikimic acid pathway. Through UV irradiation of wild-type P. cinnabarinus (WT-Pc) spores, a 3-HAA-less mutant was produced. Both WT-Pc, under the inhibitory culture condition, and the 3-HAA-less mutant were found to degrade lignin in unbleached kraft pulp as efficiently as the WT-Pc, which unambiguously demonstrated that 3-HAA does not play an important role in the fungal degradation of lignin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.