Abstract
Recently copper ion-exchanged LTA zeolites were proved to be robust for NH3-SCR reaction. In this study, Cu/LTA catalysts with Si/Al = 15 and Cu/Al = 0.4 were synthesized via incipient wetness impregnation (IWI) method, following degreening/hydrothermal aging at different temperatures (750, 800, 850, 900 °C), and used to catalyze standard SCR, fast SCR and NH3/NO oxidation reactions. Catalysts were characterized with surface area/pore volume, powder X-Ray diffraction (XRD), nuclear magnetic resonance (NMR), H2-temperature programmed reduction (H2-TPR) and in situ Diffuse Reflectance Infrared Fourier Transform Spectra (DRIFTS). Through the BET surface areas, XRD and NMR results, it can be found that the framework structure stability of Cu/LTA catalysts during hydrothermal aging was outstanding, even after harsh aging at 900 °C. Moreover, various Cu species, including Z-Cu2+, Z-[Cu(OH)]+ and CuOx clusters, were quantified for Cu/LTA catalysts hydrothermally aged under various temperatures with H2-TPR and in situ DRIFTS. An imperative finding in this study is the exceptional hydrothermal stability of [Cu(OH)]+ and the gradual conversions of both Cu2+ and CuOx clusters to [Cu(OH)]+ with increasing aging temperature. It is worth noting that this phenomenon is exactly the opposite of Cu/SSZ-13. As it is known from the literature (Song et al., 2017), the formation of CuOx not only decreases the selectivity of NOx conversion, but also can cause deterioration of zeolite structure, since the ion-exchanged copper stabilizes the zeolite. This may also explain why the hydrothermal stability of Cu/LTA samples is outstanding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.