Abstract

The rise and damping of spin excitations in three Ni81Fe19 films of thickness 50, 500, and 5000 Å have been studied with an optical pump–probe technique in which the sample is pumped with an optically triggered magnetic field pulse. The motion of the magnetization was described by the uniform mode solution of the Landau–Lifshitz–Gilbert equation. The rise time of the pulsed field within the film was smallest in the 50 Å sample and was generally greater when the pulsed field was perpendicular to the film plane. The damping constant was smallest in the 500 Å sample. The variations in the rise time and damping are attributed to the presence of eddy currents and structural disorder in the films. Under certain excitation conditions a second mode was observed in the 5000 Å sample which we believe to be a magnetostatic surface mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call