Abstract

This study presents the development of fly ash-based geopolymer mixtures for 3D concrete printing. The influence of up to 10% ground granulated blast-furnace slag (GGBS) and silica fume (SF) inclusion within geopolymer blends cured under ambient conditions was investigated in terms of fresh and hardened properties. Evolution of yield stress and thixotropy of the mixtures at different resting times were evaluated. Mechanical performance of the 3D printed components was assessed via compressive strength measurements and compared with casted samples. SF demonstrated a significant influence on fresh properties (e.g. recovery of viscosity), whereas the use of GGBS led to higher early strength development within geopolymer systems. The feasibility of the 3D printing process, during which rheology was controlled, was evaluated by considering extrusion and shape retention parameters. The outcomes of this study led to the printing of a freeform 3D component, shedding light on the 3D printing of sustainable binder systems for various building components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.