Abstract

We investigated the electrical resistance dependence on temperature of a single carbon nanotube (CNT) in vacuum, air, and water by heating the end of the CNT locally. The device used for investigation consisted of a microheater for local heating, four electrodes for measuring resistance on a silicon-on-insulator wafer, and a trench for further heat insulation. Then, the resistance of a single CNT assembled on the device was measured as a function of added heat quantity. The temperature coefficients of resistance of the CNT were 0.214×10-3, 0.422×10-3, and 0.735×10-3/°C in vacuum, air, and water, respectively. Moreover, the heat quantities required to raise the temperature of a CNT in air and water are 1.2- and 1.3-fold that in vacuum, respectively. Thus, CNTs, mainly used as thermal sensors in vacuum, may also be suitable for use in air and water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call