Abstract

Abstract A hypothesis by Maul (1977), stating the rate of change of loop current (LC) volume is related to deep Yucatan Channel (YC) transport, is tested with a continuous 54-year simulation of the Gulf of Mexico (GoM) using a regional 1/25° resolution Hybrid Coordinate Ocean Model (HYCOM) configuration. The hypothesis states that the imbalance of transport between the upper YC and the Florida Straits controls the rate of change of the LC volume and that the imbalance is compensated by transport through the deep YC. Bunge et al. (2002) found a strong relationship between the deep YC transport and the LC area using 7.5 months of data from a mooring array in the YC, but the observational record length was relatively short compared to the time scale of LC variability. The 54-year HYCOM simulation provides a much longer and spatially complete data set to study the LC variability. Results show that the time evolution of the LC between two shedding events can be viewed as a combination of relatively high-frequency fluctuations superimposed on a low-frequency trend. The high-frequency variability of the LC area time derivative and the deep YC transport are related. The low-frequency variability is examined by comparing the LC area time series with time-integrated transport in the deep YC, and statistically similar trends are identified, supporting the Maul (1977) theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.