Abstract

We used protein fusion technology to transplant the Cys3–Cys4 loop of HGFI (a class I hydrophobin from Grifola frondosa) into a nonamyloidogenic hydrophobin HFBI (a class II hydrophobin from Trichoderma reesei) and replace the corresponding amino acids between Cys3 and Cys4 in this protein to identify whether this loop renders it amyloidogenic.Water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the mutant protein HFBI-AR could form amphipathic membranes by self-assembling at the hydrophilic mica and hydrophobic polystyrene surfaces. This property enabled the mutant protein to alter the surface wettabilities of polystyrene and mica as well as to change the elemental composition of siliconized glass. Atomic force microscopy (AFM) measurements indicated that, unlike class I hydrophobins, no amyloid-like rodlets were observed on the mutant protein HFBI-AR coated mica surface. Moreover, the Cys3–Cys4 region could not catalyze the mutant protein HFBI-AR to drive intermolecular association and formation of a cross-β rodlet structure to resist depolymerization in organic solvents when it self-assembled at water–air interfaces. These results demonstrate that the Cys3–Cys4 loop is not the major determinant that initiates HGFI to form rodlets or account for the unique properties of the proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.