Abstract
Iridium(III) organometallic complexes have been a key component in commercialization of organic light-emitting diodes, but the direct relationship between their structural features and photophysical properties has not yet been fully established. Here, combined experimental and theoretical studies are carried out to elucidate the main factors governing the quantum efficiency of red phosphorescent emitters by using two heteroleptic iridium(III) complexes with high geometrical similarity. It is found that two red-emitting heteroleptic iridium complexes differing only in the steric direction of phenylquinoline (pq) and phenylisoquinoline (piq) ligands, annotated Red-pq and Red-piq, show clearly different degrees of distortion of the ligand geometry in the excited state, which leads to the higher quantum yield of Red-piq than that of Red-pq. This larger distortion of the piq ligand causes more suppressed nonradiative decay of Red-piq than that of Red-pq which is the important factor governing the higher quantum yield of Red-piq.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.