Abstract

For development of high voltage power devices, it is very important to understand local heat generation phenomena of current filaments especially for reliability designs. Current filaments mean high density currents flow only in some parts of active cells and induce large heat generation locally. They appear when excessive current flows for some reasons during device switching. The aim of this paper is to clarify the following by using a modified avalanche model: The local lattice temperature dependence of impact ionization coefficients is a main factor in current filament movements, and the movements significantly suppress local heat generation. In particular, this tendency becomes even stronger when the ambient temperature is low and after the depletion layer reaches the buffer layer on the back surface side of IGBTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.