Abstract

Quinone derivatives have been proposed as active components in lithium ion battery (LIB) electrode materials. In this work the electrochemistry of a series of substituted isoindole-4,7-diones (IIDs) was investigated. Three new IID derivatives were synthesized and characterized by various electrochemical and spectroscopic techniques. Polymerization was attempted to achieve a conducting polymer with redox active quinone side groups, which would be advantageous in a LIB application. A combination of in situ spectroelectrochemical measurements and density functional theory (DFT) calculations was used to investigate the proton coupled redox reactions of the IIDs. Results from a previous computational study of the IIDs were compared with experimental data here, and the agreement was very good. The energy of the spectroscopic transitions in the UV and in the visible region showed different correlation with redox potential and quinone substituent in the series of IIDs. This behavior was rationalized by examinatio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.