Abstract

We studied the effect of pressure in a plasma-chemical reactor on the magnetic properties of copper oxide nanoparticles. Plasma-chemical synthesis of copper oxide nanopowders was carried out using an oxygen plasma of an arc discharge at pressures of 40 Pa and 200 Pa. Transmission electron microscopy showed that the obtained samples were made up of highly agglomerated particles with average particle sizes of 31 nm and 27 nm, respectively. X-ray diffraction showed the presence of a single crystalline phase of CuO. Despite the insignificant difference in the average sizes, the nanoparticles exhibited radically different magnetic behavior. Using a vibrating superconducting quantum interference device magnetometer, it was shown that the magnetic properties of nanoparticles obtained at 40 Pa were close to the bulk material and exhibited weak ferromagnetism. The nanoparticles obtained at 200 Pa demonstrated a significant deviation from the properties of the bulk material, showed magnetic hardness, and shifts in the hysteresis loops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call