Abstract

Two novel β-functionalized push–pull zinc porphyrins with amine or phenyl push-groups and cyclic imide or carboxylic esters pull-groups have been newly synthesized for light energy harvesting applications. The ethynylphenyl spacers extended the conjugation of the porphyrin π-systems, as reflected by their red-shifted absorbance and fluorescence spectra. Computational studies performed at the B3LYP/6-31G* level indicated no steric hindrance between the porphyrin π-system and the substituents. The calculated HOMO and LUMO orbitals displayed significant delocalization in 1, where the electron density in the HOMO was localized over the push groups, whereas the LUMO was extended over the porphyrin π- and pull-groups. On the other hand, 2 did not display significant orbital segregation, which is attributed to its weaker push–pull character. Electrochemical studies revealed smaller HOMO–LUMO gaps for the push–pull zinc porphyrins. As a consequence of the push–pull effects, reduction in fluorescence intensity and lifetime was observed. Femtosecond transient absorption spectral studies revealed successful formation of singlet excited state in both of the push–pull porphyrins. Donor–acceptor conjugates were subsequently built and characterized by coordinating an electron acceptor, C60Im, via metal–ligand axial coordination. Efficient photo-induced charge separation in both donor–acceptor conjugates was witnessed wherein the charge-separated states persisted tens of nanoseconds prior returning to the ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call