Abstract

This research is aimed to increase the activity of anodic catalysts and thus to lower noble metal loading in anodes for methanol electrooxidation. The Pt–Ni–Pb/C catalysts with different molar compositions were prepared. Their performance were tested by using a glassy carbon disk electrode through cyclic voltammetric curves in a solution of 0.5 mol L −1 CH 3OH and 0.5 mol L −1 H 2SO 4. The performances of Pt–Ni–Pb/C catalyst with optimum composition (the molar ratio of Pt/Ni/Pb is 5:4:1) and Pt/C (E-Tek) were also compared. Their particle sizes and structures were determined by means of X-ray diffraction (XRD). The XRD results show, compared with that of Pt/C, the lattice parameter of Pt–Ni–Pb (5:4:1)/C catalyst decreases, its diffraction peaks are shifted slightly to a higher 2 θ values. This indicates the formation of an alloy involving the incorporation of Ni and Pb atoms into the fcc structure of Pt. The electrochemical measurement shows the activity of Pt–Ni–Pb/C catalyst with an atomic ratio of 5:4:1 for methanol electrooxidation is the best among all different compositions. The activity of Pt–Ni–Pb (5:4:1)/C catalyst is much higher than that of Pt/C (E-Tek).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.