Abstract

A PEMFC fuelled with hydrogen is known for its high efficiency and low local emissions. However, the generation of hydrogen is always a controversial issue for the application of the PEMFC due to the use of fossil fuel and the possible carbon dioxide emissions. Presently, the PEMFC-CHP fed with renewable fuels, such as biogas, appears to be the most attractive energy converter–fuel combination. In this paper, an integrated PEMFC-CHP, a dairy farm and a biogas plant are studied. A PEMFC-CHP fed with reformate gas from the biogas plant generates electricity and heat to a dairy farm and a biogas plant, while the dairy farm delivers wet manure to the biogas plant as the feedstock for biogas production. This integrated system has been modelled for steady-state conditions by using Aspen Plus®. The results indicate that the wet manure production of a dairy farm with 300 milked cows can support a biogas plant to give 1280MWh of biogas annually. Based on the biogas production, a PEMFC-CHP with a stack having an electrical efficiency of 40% generates 360MWh electricity and 680MWh heat per year, which is enough to cover the energy demand of the whole system while the total efficiency of the PEMFC-CHP system is 82%. The integrated PEMFC-CHP, dairy farm and biogas plant could make the dairy farm and the biogas plant self-sufficient in a sustainable way provided the PEMFC-CHP has the electrical efficiency stated above. The effect of the methane conversion rate and the biogas composition on the system performance is discussed. Moreover, compared with the coal-fired CHP plant, the potentially avoided fossil fuel consumption and CO2 emissions of this self-sufficient system are also calculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call