Abstract

The heat-loaded part of the combustion chamber of a liquid rocket engine are Considered. The proposed coating has several layers: an internal metal coating that contacts the part or substrate, and an external coating made of a mixture of ceramic granules and metal powder. At the same time, to obtain the initial surface for coating with the required surface layer roughness, it is proposed to use the method of sand blasting. The article analyzes possible mechanisms of material formation for "base-coating" transition zones, as well as the influence of their chemical composition on the adhesive strength of layers.. The choice of brand and combination of materials used for coating is justified. Technological modes that have been tested in production conditions when applying heat-resistant coatings to parts of modern rocket engines are proposed. The influence of technological parameters of the initial surface preparation process and the geometry of the resulting micro-relief of the substrate on the adhesion characteristics of a multilayer coating made of heat-protective materials operating in the high-temperature zone of the combustion chamber of liquid rocket engines is revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call