Abstract

The aim of this work was to study the process of reactive ion-beam sputtering of gallium arsenide using optical emission analysis of plasma in the target region to determine the optimal conditions for the formation of intrinsic GaAs oxides. The ion source was a plasmatron based on an anode layer accelerator (UAS), which generated a stream of accelerated argon and oxygen ions with an energy of 400–1200 eV. The target was made from tellurium doped gallium arsenide. Intense GaI lines (2874.2 Å, 2943.6 Å, 4033.0 Å and 4172.1 Å), atomic argon ArI, argon ions, and also FeI lines were detected in the spectrum upon sputtering of GaAs by Ar+ ions. The appearance of iron lines can be explained by the sputtering of the pole tips of the magnetic system of the ion source. An increase in the accelerating voltage from 1 to 3 kV leads to an increase in the intensity of the peaks of atomic gallium GaI (4172.1 Å) by 2.38 times, the GaI line (4033.0 Å) by 3.25 times, the GaI line (2943.6 Å) 3.4 times, GaI lines (2874.2 Å) 5 times. It was found that an increase in the partial pressure of oxygen leads to a sharp decrease in the peaks of GaI (4033.0 Å) and GaI (4172.1 Å) due to the chemical interaction of gallium and oxygen. Sputtering in pure oxygen reduces the intensity of these peaks by 8 and 5 times, respectively. The intensities of the peaks of atomic gallium GaI (2874.2 Å) and GaI (2943.6 Å) decreased in 2 and 1.78 times, respectively. In the presence of a positive potential on the target, the intensity of all lines of atomic gallium monotonically decreases with increasing potential. In the emission spectrum, lines of atomic oxygen OI (7774.2 Å) and molecular positive ions O+2 (6418.7 Å, 6026.4 Å, 5631.9 Å and 5295.7 Å) were detected. In the presence of a positive potential on the target, a monotonic decrease in the intensity of the above oxygen lines was observed. This indicates an intensification of chemical interaction of oxygen with target elements and, accordingly, a decrease in the free active oxygen particles.

Highlights

  • 1 – working chamber; 2 – high-vacuum pump; 3 – an ion source based on the UAS; 4 – gallium arsenide target; 5 – substrate holder; 6 – quartz light guide; 7 – quartz glass window; 8 – monochromator MM-101; 9 – photomultiplier FEU-106; 10 – KSP-4 recorder Fig. 1

  • 7. Достанко А.П., Русецкий А.М., Ануфриев Л.П., Бордусов С.В., Голосов Д.А., Завадский С.М., Ковальчук Н.С., Коробко А.О., Ланин В.Л., Мадвейко С.И., Телеш Е.В.; под ред

Read more

Summary

ЭМИССИОННОЙ СПЕКТРОСКОПИИ

Белорусский государственный университет информатики и радиоэлектроники (г. Минск, Республика Беларусь). Целью данной работы являлось исследование процесса -реактивного ионно-лучевого распыления арсенида галлия с использованием оптического эмиссионного анализа плазмы в области мишени для определения оптимальных условий формирования собственных оксидов GaAs. Источником ионов являлся плазмотрон на базе ускорителя с анодным слоем, который генерировал поток ускоренных ионов аргона и кислорода с энергией 400–1200 эВ. Увеличение ускоряющего напряжения с 1 до 3 кВ приводит к росту интенсивности пиков атомарного галлия GaI (4172,1 Å) в 2,38 раза, линии GaI (4033,0 Å) – в 3,25 раза, линии GaI (2943,6 Å) – в 3,4 раза, линии GaI (2874,2 Å) – в 5 раз. Интенсивность пиков атомарного галлия GaI (2874,2 Å) и GaI (2943,6 Å) снизилась в 2 и 1,78 раза соответственно. При наличии положительного потенциала на мишени интенсивность всех линий атомарного галлия монотонно снижается с увеличением потенциала. При наличии положительного потенциала на мишени наблюдалось монотонное снижение интенсивности вышеуказанных линий кислорода. TELESH Belarusian State University of Informatics and Radioelectronics (Minsk, Republic of Belarus)

Методика проведения эксперимента
Результаты и их обсуждение
Список литературы
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call