Abstract
The electron transfer kinetics of several completely rigid dyads and triads which contain N,N-dimethylaniline (DMA) and dimethoxynaphthalene (DMN) as possible donors and the dicyanovinyl group (DCV) as acceptor were studied by means of (sub)picosecond time-resolved transient absorption spectroscopy. In the dyads DMN[n]DCV, the rate of charge separation decreases exponentially with the number of σ-bonds n in the bridge, the ‘‘damping factor’’ being 0.8 per bond in tetrahydrofuran solvent. In the triads DMA[4]DMN[8]DCV, the primary electron transfer from DMN to DCV occurs in solvents of low and medium polarity within 10 ps in both isomers (syn and anti). The rates of the secondary electron transfer step (formation of the fully charge separated state, DMA+[4]DMN[8]DCV−) and the following deactivation processes depend, however, strongly on the conformation. In acetonitrile, the primary electron transfer involves the two donor groups yielding preferentially DMA+[4]DMN−[8]DCV. In the anti-conformer this state is fairly long-lived; in the syn-conformer, however, it decays rapidly, in part to locally excited triplet states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.