Abstract

1. It is hypothesized that the deliberate structural tailoring of compounds designed for drug use to increase the specific plasma protein binding can be used to reduce first-pass hepatic metabolism. To test the feasibility of this hypothesis, a dataset of drugs with plasma protein binding of 90% or above divided into three classes including 50 acids, 44 bases and 69 neutrals was analyzed.2. Among the drugs with ≥99% plasma protein binding, the fraction of the total dose existing in free form in vivo (free dose fraction) decreased in the following order: acids (0.55%) > neutrals (0.16%) > bases (0.08%). The order was different for the fraction of the total dose that existed in plasma protein bound form (plasma protein bound dose fraction): acids (58%) > neutrals (17%) = bases (18%).3. The free fraction was poorly correlated with the partition coefficient (Log P). The lower aqueous solubility associated with high plasma protein binding was explained by differences in Log P and not by the plasma protein binding per se. The logarithm of the extrarenal clearance was correlated with Log P. For acids and bases, extrarenal clearance was also correlated with fu. For neutrals, plasma protein binding had no protective effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.