Abstract

The aim of this study was to test the selectivity, in-vivo effectiveness, and potential mechanism of action of a linomide analogue ( N-phenyl-1,2-dihydro-4-hydroxyl-2-oxo-quinoline-3-carboxamide, Lin05) for inhibition of choroidal neovascularization. The selectivity of Lin05 was tested in cell proliferation assays with human umbilical vein endothelial cells (HUVEC) and a retinal pigmented epithelial cell line(ARPE-19). In-vivo anti-angiogenic effect of Lin05 was investigated utilizing an experimental laser-induced choroidal neovascularization (ECNV) model in adult Brown Norway rats. Western blot and/or reverse transcriptase-PCR was used to test the effect of Lin05 on potential targets. Our results indicate that Lin05 is at least an 8-fold more selective inhibitor of endothelial cell proliferation compared to RPE cells. Systemic administration of Lin05 in an ECNV model was associated with a significant decrease in both vascular leakage on fluorescein angiography and lesion size by histopathology ( p = 0.02). No systemic toxicity was detected for Lin05 in major organs such as the liver, lung and kidneys. Lin05 did not inhibit VEGF-induced VEGFR2 (KDR) phosphorylation in HUVEC nor was associated with decreased VEGF gene expression. Also it did not inhibit insulin-like growth factor (IGF-1) and Epidermal Growth Factor (EGF) induced activation of p42/p44 MAPK activation. It inhibited both PDGF- and bFGF-induced p42/p44 MAPK phosphorylation. However, the effect on PDGF was variable in different HUVEC cells. In conclusion, Lin05 is a potential anti-angiogenic agent for the treatment of eye diseases associated with pathological neovascularization. The anti-angiogenic effect of Lin05 is likely through inhibition of bFGF but not through inhibition of the VEGF/KDR pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call