Abstract

To adapt porous material for its application as low noise trailing edge, a special rolling process, using a time-varied rolling gap, was used in previous research to produce a porosity gradient in the direction of rolling. Investigations suggest that a gradient in porosity may also be produced in the thickness direction of the material, i.e., in the rolling gap direction, without using a specialized rolling mill. Such a gradient may help to further increase acoustic efficiency of porous materials. The aim of this study was to analyze the dependency of such a gradient on the rolling parameters, and to clarify which stress components are significantly responsible for an increased near-surface compaction. Experiments using different relative compressed lengths were performed to analyze shear-dominated and friction-dominated rolling. The material was characterized using compression tests, computed tomography and flow resistance measurements. It is shown that the compressed length is an important parameter for adjusting a porosity gradient. Rolling with small values of compressed length during all rolling passes leads to increased compaction of near-surface regions, compared to interior ones. The difference in porosity achieved was up to 15%. Furthermore, the results suggested that a gradient in hydrostatic stress is responsible for the porosity gradient. Validation of the results by FE simulation is forthcoming, but not part of this publication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call