Abstract

A series of compression experiments was conducted to observe the pore-water pressure variations of saturated warm frozen soils over time. The results indicate that saturated warm frozen soils can exhibit excess pore-water pressure when subjected to external loads. The pore-water pressure fluctuates rather than varying monotonically, and it gradually increases with increasing compressive deformation as the pores are compressed. Furthermore, the permeability of the soil allows pressure dissipation. Thus, the pore-water pressure is continuously changing because of the interactions between these two opposing processes. The peak pore-water pressure follows an exponential relationship with the soil temperature and decreases to a steady value as the temperature decreases. A dissipation trend is observed after the peak pressure is reached. This trend reflects the influence of consolidation in the deformation of warm frozen soils. As the temperature increases, the role of the consolidation becomes more significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call