Abstract

Decoration of α-FeOOH nanorods over PAN nanofibers was performed using the electrospinning technique. The as-designed decorated nanofibers were characterized using various techniques such as wide-angle powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry (UV-vis), thermogravimetry analysis (TGA), N2 adsorption-desorption isotherm (BET), and X-ray photoelectron spectrometry (XPS). α-FeOOH NRs were decorated uniformly over PAN fibers, as observed from its morphological investigation, which shows novelty. 1D α-FeOOH nanorods with PAN nanofibers have not been studied for photocatalytic characteristics. No literature mentions that α-FeOOH nanorods coated in PAN NFs act as photocatalysts to degrade hazardous azo dyes. α-FeOOH nanorods on PAN NFs inhibit aggregation and increase dye binding, boosting photocatalytic performance. PAN/α-FeOOH NFs have a maximal specific surface area with a reduced bandgap than α-FeOOH NRs. PAN/α-FeOOH nanofibers showed excellent photocatalytic activity for the degradation of Trypan blue (TB) (120 min, 99.7%) and Eriochrome black T (EBT) dyes (160 min, 97.6%), respectively, under solar light irradiation. PAN/α-FeOOH NFs have the potential to be used in the degradation of azo dyes and the treatment of wastewater due to their low energy requirements and versatility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call