Abstract

The phase behavior of an embedded-charge model for lysozyme developed by Carlsson and co-workers (J. Phys. Chem. B 2001, 105, 9040) is investigated using grand canonical transition matrix Monte Carlo simulation. Within this model, protein-protein interactions are approximated through a combination of hard-sphere repulsion, isotropic hydrophobic attraction, and screened electrostatic interactions through a series of embedded point charges located at the positions of charged amino acid groups within lysozyme. Liquid-liquid phase diagrams are constructed for a wide range of solution conditions and compared with experimental data. Our results indicate that the model is generally capable of describing qualitative trends in the evolution of protein phase behavior with variation of pH and ionic strength. From a quantitative perspective, model estimates for both the change in critical temperature with variation of the solution conditions and the critical concentration do not agree with experimental results. We find the width of model coexistence curves to be independent of solution conditions and narrow relative to experimentally obtained phase envelopes. Connections between the value of the second virial coefficient evaluated at the critical temperature and the location of the liquid-liquid phase envelope are also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call