Abstract

Three distinct thermodynamic analysis models are developed and applied to a renowned cryogenic engine (PPG-102), namely the isothermal model, the ideal Schmidt model, and the ideal adiabatic model. Through a comparative analysis, the theoretical outcomes derived from these models are juxtaposed with the corresponding theoretical results from the existing literature. The comprehensive evaluation of these findings demonstrates significant convergence, with minor deviations primarily attributed to the inherent assumptions underlying each model. The design of the PPG-102 engine is meticulously executed within the Solidworks environment, allowing for the subsequent simulation under operating conditions identical to those of the computational models. Remarkably, the simulation results closely approximate the outcomes of the adiabatic analysis, thus corroborating the validity and effectiveness of this particular model. In this work, the presented models, initially developed for thermal Stirling engines, are augmented and applied to a cryogenics Stirling engine, offering a unique understanding of the workings of this apparatus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.