Abstract
<span lang="EN-US">The next generation of wireless cellular communication networks must be energy efficient, extremely reliable, and have low latency, leading to the necessity of using algorithms based on deep neural networks (DNN) which have better bit error rate (BER) or symbol error rate (SER) performance than traditional complex multi-antenna or multi-input multi-output (MIMO) detectors. This paper examines deep neural networks and deep iterative detectors such as OAMP-Net based on information theory criteria such as maximum correntropy criterion (MCC) for the implementation of MIMO detectors in non-Gaussian environments, and the results illustrate that the proposed method has better BER or SER performance.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.