Abstract

The use of nanomaterials is gradually increasing with the progress of nanotechnology. In particular, the production of nanocomposites incorporating nanoparticles is one of the most significant areas in which nanomaterials are being used increasingly. The first objective of this research was to detect the punch shear or penetration resistance behavior and damage mechanisms of hybrid nanocomposites obtained by using silica (SiO2) nanoparticles. For that purpose, six different SiO2 hybrid nanocomposites with different laminations three layer (3La), 5La, 7La, 11La, 15La and 21La and different thicknesses (HC) of 0.95∼4.98 mm, were made by using vacuum assisted transfer molding (VARTM). During this research, quasi-static punch-shear (QS-PS) tests at span punch ratios (SPRs) of 1.16, 1.33, 1.67, 2.00, 2.33, 2.67, and more were conducted to determine quasi-static penetration mechanics and penetration resistance behavior. Moreover, deflection, energy dissipation, damage area, stiffness, and peak force values were investigated through experimental results and scanning electronic microscope (SEM) images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.