Abstract

Impact forces in pneumatic conveying bends are becoming more significant in industry, and in research centres, as the size of pneumatic conveying pipeline bores increase to achieve high product throughput with the greater efficiency possible from a dense phase conveying system. This paper continues the authors' work in investigating this issue by undertaking a detailed comparison of the equations given for contact time and maximum contact force, from a range of literature with applications to various impact events both practical and theoretical. These predictions are also compared: to experimental results presented previously by the authors, to further results from an electrical resistance measurement system, and to a limited extent to experimental results from existing literature. The equations that are most reliable consider the elasticity of the particle and the elasticity of the impact surface, as well as the particle size, and also reflect a weak dependence on impact velocity. Whilst the electrical resistance measurement method has provided a useful verification of a number of theoretical predictions, its application is limited and is not suitable for the majority of particles that are conveyed pneumatically. Future work will expand on the particles tested using this method, and will also work on understanding better the influence of the force sensor on contact time and maximum force measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.