Abstract

Transparent conductive electrodes have become essential components of numerous optoelectronic devices. However, their optical properties are typically characterized by the direct transmittance achieved by making use of spectrophotometers, avoiding an in-depth knowledge of the processes involved in radiation attenuation. A different procedure based on the Double Integration Sphere combined with the numerical Inverse Adding-Doubling (IAD) method is employed in this work to provide a comprehensive description of the physical processes limiting the light transmittance in commercial indium tin oxide (ITO) deposited on flexible PET samples, highlighting the noticeable contribution of light scattering on the total extinction of radiation. Moreover, harnessing their flexibility, the samples were subjected to different mechanical stresses to assess their impact on the material's optical and electrical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.