Abstract
An investigation of the optical and excitonic properties of photocatalytic compounds based on both experimental and theoretical approaches is proposed. More specifically, this paper reports, for the first time, the local-field, optical anisotropy, and excitonic effects in BiVO4, an active photocatalytic material in the visible range. The analyses are based on electron energy-loss spectroscopy measurements, ground-state density functional theory calculations, including crystal local-field effects, and many-body corrections using the Bethe-Salpeter equation. These results are supported by a comparison with two materials, namely, TiO2 anatase and rutile, which are well-known to differ in their photocatalytic properties, those being important and negligible, respectively. The analogies found for these two categories of compounds allow the proposal of criteria that appear to be essential for producing an optimal photocatalytic material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemistry of Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.