Abstract

In knee braced frames, the braces are attached to the knee element rather than the intersection of beams and columns. This bracing system is widely used and preferred over the other commonly used systems for reasons such as having lateral stiffness while having adequate ductility, damage concentration on the second degree convenience of repairing and replacing of these elements after Earthquake. The lateral stiffness of this system is supplied by the bracing member and the ductility of the frame attached to the knee length is supplied through the bending or shear yield of the knee member. In this paper, the nonlinear seismic behavior of knee braced frame systems has been investigated using incremental dynamic analysis (IDA) and the effects of the number of stories in a building, length and the moment of inertia of the knee member on the seismic behavior, elastic stiffness, ductility and the probability of failure of these systems has been determined. In the incremental dynamic analysis, after plotting the IDA diagrams of the accelerograms, the collapse diagrams in the limit states are determined. These diagrams yield that for a constant knee length with reduced moment of inertia, the probability of collapse in limit states heightens and also for a constant knee moment of inertia with increasing length, the probability of collapse in limit states increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.