Abstract

The determination of tooth bending strength is a basic issue in gear design. This work presents the change of nominal tooth root stress of external toothed, cylindrical gears depending on the geometry used. The nominal tooth root stress is analyzed with using finite element simulations. The numerical calculations are executed in Abaqus. The imported geometries are produced by our own program in MATLAB. The boundary conditions to the models are defined accordance with the most significant analytical methods used in practice. This approach allows mapping direct correlation analysis by these calculations. The optimization of computational capacity used is also considered. In addition to the examination of the significant tooth stress value of symmetrical element pairs, the position of the critical cross-section is also analyzed. The effect of the asymmetric design of the tooth profile on the nominal tooth root stress is also presented in our investigations. The purpose of the numerical simulations carried out here is to determine the effect of the coast side angle on the magnitude of the significant tooth root stress and the position of the critical cross-section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call