Abstract

Layered NaNixMn1-xO2 (0 ≤ x ≤ 1) oxides were prepared via solid state reactions. Different reaction conditions were required to obtain phase pure samples, depending on the value of x. The 0 ≤ x ≤ 0.1 compositions were prepared in an inert argon atmosphere at 700°C and had a monoclinically distorted O′3 type structure. The 0.25 ≤ x ≤ 0.33 compositions were prepared in air at 850°C and had a P2-type structure. Compositions in the range of 0.5 ≤ x ≤ 0.66 were synthesized in air at 850°C and had an O3-type structure. Lastly, compositions with 0.9 ≤ x ≤ 1 were prepared in an oxygen atmosphere at 700°C and had a monoclinically distorted O′3 type structure. Electrochemical experiments were performed on pure phase samples. All showed reversibility of sodium ions and high capacities. The highest reversible capacity was achieved for x = 0.66, with a capacity of ∼190 mAh/g and an average discharge voltage of 3.07 V, corresponding to a high energy density of 2705 Wh/L. This is among the highest reported volumetric energy densities for Na-ion battery electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.