Abstract

Surface functionalization of a series of nanosized iron oxide particles (average diameter around 6 nm) with oleic acid was realized in this study. The aim is to suspend the surface-functionalized nanoparticulated materials in insulating mineral oil and evaluate their colloidal stability as a function of time. Nanoparticulated samples presenting stoichiometry close to maghemite were obtained by oxidation of a freshly precipitated magnetite sample. Systematic variations observed in the Fe3+/Fe2+ ratio, average particle size, and lattice constant were attributed to differences in oxidation route and oxidation condition employed. Morphological, compositional, thermal, optical and magnetic characterization techniques were used in the investigation of native (P, PN1, PN2, POX1, POX3, and POX7) and surface-functionalized (POA, PN1OA, PN2OA, POX1OA, POX3OA, and POX7OA) samples. While suspending the oleic-acid-coated nanosized iron oxide particles in insulating mineral oil, the best colloidal stability was achieve...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.