Abstract

BackgroundHuman brucellosis has become a severe public health problem in China’s Guangxi Province, and there has been higher prevalence of brucellosis in this region after 2010. Both multiple locus variable-number tandem repeat analysis (MLVA) and multilocus sequence typing (MLST) assay schedules were used to genotype isolates and determine relationships among isolates.ResultsA total of 40 isolates of Brucella were obtained from humans, pigs, and dogs from 1961 to 2016. There were at least three species of Brucella detected in Guangxi Province, Brucella melitensis, Brucella suis, and Brucella canis, with 16, 17, and 7 isolates, respectively. Of which B. suis biovar 3 was the predominant species resulting in pig brucellosis in the area examined before 2000s. Moreover, B. melitensis biovar 3 was found to be mainly responsible for human brucellosis during 2012–2016. All B. melitensis isolates in this study belonged to East Mediterranean lineage. MLVA-11 genotype 116 was the dominant genotype and represented 81.2% of the isolates. MLVA cluster analysis showed there to be 44% (7/16) brucellosis cases caused by B. melitensis with a profile of outbreak epidemic from 2012 to 2016. However, nearly 83.3% (20/24) of brucellosis cases resulting from both B. suis and B. canis showed no epidemiological links or sporadic characteristics. MLVA-16 analysis confirmed extensive genotype-sharing events between B. melitensis isolates from Guangxi and other northern provinces within China. These data revealed that there are potential epidemiology links among these strains. B. suis strains of this study showed a unique genetic lineage at the global level and may have existed historically in this area. However, present B. canis isolates were closely related to previously reported isolates in Korea, where they may have originated. MLST typing showed that the population structure of Brucella strains had changed considerably in this province; ST17 and ST21, two previously predominant populations appeared to have been replaced by recently emerging ST8 group.ConclusionsOur investigation data have inspired the hypothesis that Guangxi Province had been subject to an imported human brucellosis epidemic. Our data suggest that strains found in Northern regions of China are the principal source of infections in recent cases of human brucellosis in Guangxi Province. Comparative genomic analysis from more strains is necessary to confirm this hypothesis. This work will facilitate better understanding of the epidemiology and improve the effectiveness of control and prevention of brucellosis in this region.

Highlights

  • Human brucellosis has become a severe public health problem in China’s Guangxi Province, and there has been higher prevalence of brucellosis in this region after 2010

  • B. suis strains of this study showed a unique genetic lineage at the global level and may have existed historically in this area

  • multilocus sequence typing (MLST) typing showed that the population structure of Brucella strains had changed considerably in this province; ST17 and ST21, two previously predominant populations appeared to have been replaced by recently emerging ST8 group

Read more

Summary

Introduction

Human brucellosis has become a severe public health problem in China’s Guangxi Province, and there has been higher prevalence of brucellosis in this region after 2010. Both multiple locus variable-number tandem repeat analysis (MLVA) and multilocus sequence typing (MLST) assay schedules were used to genotype isolates and determine relationships among isolates. Human cases due to B. abortus are sporadic in China and, in Sichuan, B. abortus is the predominant strain isolated. It generally causes infections less severe than those caused by B. melitensis or B. suis [8, 9]. Classical biotyping is the gold standard for investigations of phenotypic characteristics, and deeper molecular epidemiological investigations can be used to trace back the source of infection to its geographic origin and determine relationships among isolates [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call