Abstract
Compared to the standard cycle, the Miller cycle decreases the cylinder maximum combustion temperature which can effectively reduce NOX emissions. In this paper, a zero-dimensional two-zone combustion model is used to establish the simulation model of a marine dual-fuel engine, which is calibrated according to the test report under different loads. Due to the high emissions under part load, the Miller cycle (early intake valve closing method) is used for optimization. By analyzing the cylinder pressure, temperature, heat release rate and NOx emissions under different cases, it can be found that the effective working volume and thermal efficiency decrease with the advance of intake valve closing and improve with the increase of the geometric compression ratio. In all optimization cases, the NOX emissions and fuel consumption are reduced by 72% and 0.1%, respectively, by increasing the geometric compression ratio to 14 and the intake valve closing timing to 510 degree of crank angle (The reference top dead center is 360 degree of crank angle). The simulation results show that the early intake valve closing Miller cycle can effectively reduce the NOX emissions and cylinder peak pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.