Abstract

In this study, we investigated the microstructure, mechanical properties, and thermal performance of Sn-xBi-1Ag (x = 35, 37, 45, and 47 wt.%) solders, with a particular focus on the effect of adding trace Si atoms. The impact of different Ag concentrations on the properties of Sn-xBi-Ag-0.5Si solders was also studied. The results indicated that as the amount of Bi added to Sn-xBi-1Ag solder alloys increased, the tensile strength, microhardness, melting temperature, and melting range decreased somewhat, but the wettability improved. The Cu6Sn5 layer between the soldering alloy and the Cu substrate became thinner upon increasing the Bi content. Adding microcrystalline Si atoms to the Sn-Bi-1Ag alloy improved the tensile strength and microhardness, but the melting point and melting range were not significantly changed. The wettability was optimized, and the diffusion layer formed with the Cu matrix was significantly thinner. By increasing the Ag content in the Sn-Bi-(1,3)Ag-0.5Si alloy, the tensile strength of the alloy was continuously strengthened, while the hardness decreased slightly and the melting point and melting range increased slightly. The wettability was greatly improved, and the Cu6Sn5 layer became thinner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call