Abstract

The results of studies of the microstructure in the initial phase of the discharge in air in the gap between the pin and a plane 1.5 mm long are presented. Measurements show that within 15 ns after breakdown, the channel is a bundle of a large number of microchannels, the current in the channel grows almost linearly up to 1 kA, and the electron concentration reaches 2 × 1019 cm−3. Taking into account the experimental data, the electron temperature dynamics in a separate microchannel was calculated. It was found that the average electron temperature is from 4 to 8 eV, the electric field strength is ∼300 kV/cm, and the electrical conductivity is ∼10 Ω−1 cm−1. The obtained results indicate that it is the microstructure of the discharge that determines the relatively high values of the average temperature of electrons in combination with a sufficiently high degree of ionization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call