Abstract

Glucosamine derivatives have been found to have anticancer effects in many cancer cell lines in previous investigations. The effect of glucosamine sulfate on neuroblastoma, however, is uncertain. The potential cytotoxic effects of glucosamine sulfate on the SH-SY5Y cell line were investigated in this study. The underlying mechanisms of this cytotoxicity have also been studied. In this study, the SH-SY5Y cell lines were used. The cells were treated with various concentrations of glucosamine sulfate (0.3125, 0.625, 1.25 and 2.5 μg/mL) and the viability of the cells was determined using the XTT assay after 24 hours. The quantities of cleaved PARP, BCL-2, 8-Hydroxy-desoxyguanosine (8-oxo-dG), cleaved caspase 3, Bax, total oxidant, and total antioxidant in the cells were determined by ELISA kits. At doses of 0.3125, 0.625, 1.25 and 2.5 μg/mL, glucosamine sulfate dramatically reduced cell viability in SH-SY5Y cells (p<0.001). ELISA tests demonstrated that 1.25 μg/mL glucosamine sulfate considerably increased the amounts of 8-oxo-dG, cleaved caspase 3, Bax, cleaved PARP and total oxidant. However, 1.25 μg/mL glucosamine sulfate treatment did not change the quantity of BCL-2 protein. Altogether, glucosamine sulfate produced considerable cytotoxicity in SH-SY5Y cells by triggering oxidative stress, inducing DNA damage, and finally causing apoptosis. In addition, more research is needed to determine the efficacy of glucosamine sulfate as an anticancer drug in the treatment of neuroblastoma (Fig. 5, Ref. 39).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call