Abstract
A small size effect could be conducive to enhancing the electrochemical performance, while the mechanism by which they also increase the capacitance for carbon electrode materials has not been established. Here, ultrasmall polyacrylonitrile particles with controllable sizes are supported on poly(ionic liquid)s microspheres (PILMs/PAN) by epitaxial polymerization growth strategy. Unlike traditional subtraction formulas in developing a porous architecture, we report on the synthesis of creating numerous micro/mesopores in carbon materials by addition theorem, and thus making for the perfection of packing density, which has not been reported yet. As an example, PILMC/PAN-L with a well-balanced specific surface area of 875.38 m2 g-1 and packing density of 1.05 g cm-3 demonstrated gravimetric and volumetric capacitances of 309 F g-1 and 324.45 F cm-3 at 0.5 A g-1, showing good rate performance and stable cyclability. Moreover, the underlying mechanism is thoroughly developed using multiple electrochemical methods. On this basis, this work would afford avenues to further enhancing the electrochemical performance, especially in exploring advanced carbon materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.