Abstract
Abstract Several researches have studied the physical properties of hydrothermally-synthesized low dimensional piezoelectric nanostructures. However, the obtained piezoelectric coefficient is not high and the relationship between physical properties and microstructures is still neglected. Here we report the piezoelectric and ferroelectric properties of different lead-free sodium bismuth titanate (Na0.5Bi0.5TiO3, NBT) microstructures synthesised with hydrothermal routes and give visualization of domain structures using piezoresponse force microscopy. The NBT nanowire exhibits better local piezoelectric response compared with NBT spherical aggregates and microcubes and other one-dimensional materials prepared by hydrothermal method and the large piezoelectric coefficient of nanowire was explained by observed regular stripe domain structures. Moreover, it is found that there are different domain configurations at the top and side of the nanowire under the external electrical fields, which don't change the regular stripe domain structure but lead to the movement of domain boundaries. By finite element modeling, it attributes to the different electric potential distributions from tip within the nanowire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.