Abstract
In this study, the mechanism for ohmic contact of Ti/Al bilayer formation on as-grown, etched and postetch annealed GaN surfaces were investigated. A nonalloyed Ti/Al ohmic contact to etched GaN surface, with postetch annealing prior to metal deposition, was obtained. The specific contact resistance of 2.3×10−4 Ω cm2 was obtained. The nonalloyed ohmic contact may be attributed to the postetch annealing which generates nitrogen vacancies that result in a heavily n-type surface thereby forming a tunneling junction. On the other hand, the nonalloyed Ti/Al contact on as-grown and as-etched GaN surfaces exhibits non-ohmic behavior. After alloying at 500 °C for 5 min, Ti/Al contacts on as-grown, as-etched and postetched annealing GaN surfaces have specific contact resistances around 9.8×10−5, 1×10−4, and 7.2×10−5 Ω cm2, respectively. Nonalloyed Ti/Al ohmic contacts would be especially useful for fabricating high breakdown, recessed-gate field effect transistors on GaN since the moderate postannealing condition converts only the near surface layer to heavily n type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.