Abstract

Corrosion of steel reinforcement in concrete is a significant cause of structural failure, particularly in environments exposed to chloride ions and mechanical stress. The passivation film on steel reinforcement, composed of hematite or magnetite, plays a crucial role in protecting the steel from further corrosion. However, the intrusion of harmful ions or mechanical stress can compromise the film’s integrity, transforming it into a loose structure and accelerating the corrosion process, leading to structural failure. This study investigates the mechanical behaviors at the interfaces between corrosion products (hematite and magnetite) and CSH using reactive molecular dynamics. CSH and interfacial models incorporating hematite and magnetite were developed, with stress–strain analysis refined by filtering raw data and using true strain rather than engineering strain to improve the precision of the stress–strain responses. The results indicate that the Magnetite-CSH interface is more prone to loosening under external forces compared to the Hematite-CSH interface, thereby reducing its corrosion resistance. Structural evolution analysis under uniaxial tension highlights the detrimental effects of passivation film degradation on interfacial mechanical properties. This study contributes to improving the precision of stress–strain responses in MD models and facilitates comparison of mechanical properties at the nanoscale with results from other scales. The findings provide valuable guidance for improving the durability and performance of construction materials in corrosive environments, helping to bridge the gap between molecular-level simulations and macroscopic experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.