Abstract
AbstractMemory shape magnetic alloys, especially Heusler alloys, are important materials in replacing conventional cooling with magnetic systems. In the present study off stoichiometric Heusler alloys with nominal composition Χ50Υ25+xΖ25‐x (X = Ni; Y = Mn; Z = Sn; x = 13, 14) were prepared by arc melting followed by thermal treatment. Structural properties were analyzed with X‐ray diffraction at room temperature (RT) and at elevated temperatures, above the martensite—austenite transition area, to determine the relevant crystallographic parameters and observe the transition. Martensite stabilization at RT appears to be a challenge, coexistence of martensite—austenite phases were observed and calculated for both 38–12 and 39–11 (16% and 12% austenite, respectively). Magnetization measurements versus temperature and field were recorded in the areas of interest where 1st order transitions were expected (355 K for x = 13 and 408 K for x = 14), and the magnetic entropy's changes (ΔSm) were determined [0.4 (J/kgK) for x = 13 and 0.3 J/(kgK) for x = 14; Hmax = 1 T]. The complex character of the magnetic properties and their dependence on Mn‐Sn ratio and on the distance between Mn atoms is discussed. The structure and the lattice parameters were determined using an anisotropic strain broadening model; stress and strain were detected in the structure due to crystal phase coexistence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.