Abstract

In recent years, there has been increasing effort devoted to the development of single-phase white phosphors due to drawbacks such as severe reabsorption and color deviation in traditional white light-emitting diodes (WLEDs). A new feasible strategy has emerged for achieving white light emission through the Bi3+-Eu3+ energy transfer in suitable single-phase phosphors. Therefore, a series of Gd3TaO7:xBi3+ and Gd3TaO7:0.01Bi3+,yEu3+ phosphors were synthesized via a high-temperature solid-state method, and their properties were systematically characterized. In Gd3TaO7, Bi3+ occupies two kinds of Gd3+ site, resulting in two broad emission bands peaking at 427 nm and 500 nm respectively under ultraviolet (UV) excitation, which arise from 3P1 → 1S0 transitions. By adjusting the concentration of Eu3+ in Gd3TaO7:0.01Bi3+,yEu3+, effective energy transfer can occur between Bi3+ and Eu3+, thus enabling the regulation of green-white-red luminescence under 332 nm excitation and blue-white-red luminescence under 365 nm UV light irradiation. Upon stimulation with a 365 nm UV chip, Gd3TaO7:0.01Bi3+,0.02Eu3+ emits white light with CIE coordinates of (0.3509, 0.3202), a color temperature of 4629 K, and an impressive color rendering index of 87.96. The above results indicate the potential of Gd3TaO7:0.01Bi3+,yEu3+ phosphor as a viable candidate for WLED applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call