Abstract

The development of the flow field produced by concentric jets used in the blown-film manufacturing process was studied experimentally using hot wire anemometry. It was found that the inner jet was entrained into the outer jet before the outer jet attached to the wall. The inner shear layer of the outer jet attached to the surface 3H to 5H downstream of the jet exit, and the outside shear layer of the outer jet attaches to the surface further downstream of the jet exit. The distribution and spectra of the fluctuating wall pressure was measured using microphones. The pressure fluctuations were largest where the outer jet attached to the surface, and had characteristic frequencies of 100to900Hz. Measurements of two-point and two-time correlation of the fluctuating pressure were used to characterize the development of the large-scale structures that caused these pressure fluctuations. It was found that the structures were convected along the surface at 0.45 to 0.7 of the outer jet velocity for different ratios between inner and outer jet velocities. The convection velocity of the large scale structures in the region farther than 10H downstream of the jet exit was determined by the upper jet velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.