Abstract

Besides the widely applied hydropower, wind farms and solar energy, biomass and municipal and industrial waste are increasingly becoming important sources of renewable energy. Nevertheless, fouling, slagging and corrosion associated with the combustion processes of these renewable sources are costly and threaten the long-term operation of power plants. During a high-temperature biomass combustion, alkali metals in the biomass fuel and the ash fusion behavior are the two major contributors to slagging. Ash deposits on superheater tubes that reduce thermal efficiency are often composed of complex combinations of sulfates and chlorides of Ca, Mg, Na, and K. However, thermodynamic databases involving all the sulfates and chlorides that would favor a better understanding and control of the problems in combustion processes related to fouling, slagging and corrosion are not complete. In the present work, thermodynamic properties including solubility limits of some phases and phase mixtures in the K2SO4-(Mg,Ca)SO4 system were reviewed and experimentally investigated. Based on the new and revised thermochemical data, binary phase diagrams of the K2SO4-CaSO4 and K2SO4-MgSO4 systems above 400 °C, which are of interest in the combustion processes of renewable-energy power plants, were optimized.

Highlights

  • The energy sector generates major greenhouse gas emissions globally

  • On the heating differential scanning calorimetry (DSC) vs. temperature curves, temperatures of phase transition and melting appeared as sharp endothermic peaks

  • The thermodynamic modeling of ashes is a useful tool for predicting ash behavior

Read more

Summary

Introduction

The energy sector generates major greenhouse gas emissions globally. A move towards the increased production of energy from renewable sources across different economic sectors is vital to environmental protection. The utilization of renewable sources such as solid biomass, municipal waste and industrial waste for energy production is one of the available alternatives for reducing the use of fossil fuels. In an attempt to enhance self-sufficiency in energy, fossil fuel importing countries have recently planned to increase energy generation from renewable sources and optimize existing renewable-energy power plants. One of the motives to increase the use of renewable. In biomass-rich countries such as Finland, the energy produced from solid biomass (wood-based fuels) accounted for 25% of the total energy consumption in 2020 [2].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.