Abstract
A mathematical description of the thermal degradation of spongin-based scaffolds is given. The Arrhenius integral was evaluated using the inverse problem approach, in which the unknown values were the activation energy EA, the pre-exponential factor A, and the model function f(α) characterizing the physical process. The form of f(α) was determined and the values of the parameters EA, A and TS were evaluated in detail. Moreover, the function f(α) assessed in this study was compared with classical solid-state model functions. Finally, the mean square minimization approach was used to solve the inverse problem with unknown function f(α) and pre-exponential constant A. Likewise, the approximation of f(α) with 6th- and 7th-degree polynomials was used to obtain numerical values of EA and A. This study evaluated the inverse problem approach for the Arrhenius equation. These investigations provide new insight into the description of the thermal degradation of spongin-based scaffolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.