Abstract

The interaction between BSA and compound 1 was studied by UV–vis, fluorescence and circular dichroism spectroscopy under physiological conditions (pH = 7.4). Molecular docking and molecular dynamics analyses were also performed. The results showed that compound 1 could bind to BSA. When compound 1 bound to BSA, there were a series of changes in the spectral properties of BSA, which were an enhancement effect of the UV–Vis spectrum of BSA, fluorescence quenching and a weak conformational change in the CD spectrum. The results of the fluorescence experiments at 298, 303 and 310 K showed that fluorescence quenching caused by the addition of compound 1 to BSA was generally static quenching accompanied by a dynamic quenching process, which was shown by the quenching constants of 2.010 × 104 L∙M−1, 1.850 × 104 L∙M−1, and 1.970 × 104 L∙M−1 at the three different temperatures, respectively. From the obtained binding constants and thermodynamic parameters, it was found that hydrophobic forces played an important role in the binding process of 1 to BSA. The results of synchronous fluorescence and three-dimensional fluorescence showed that compound 1 caused a weak conformational change in BSA. Docking results showed that compound 1 was located at binding site II of bovine serum albumin protease. In addition, the flavonoid moiety of compound 1 contributes to the hydrophobic binding of compound 1 to BSA. The results of molecular dynamics, including the root-mean-square deviation (RMSD) and RMS fluctuation (RMSF) values, showed that the binding of compound 1 to BSA did not cause a significant conformational change in BSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call