Abstract
A series of substituted benzaldehyde thiosemicarbazide compounds (1–7) were synthesized as xanthine oxidase (XO) inhibitors, and the interactions between substituted benzaldehyde thiosemicarbazide compounds (1–7) and XO were studied by ultraviolet spectroscopy, fluorescence spectroscopy, and molecular docking. It was found that the hydrogen bond and hydrophobicity were the main interactions between substituted benzaldehyde thiosemicarbazide compounds and XO, and introducing OH at the para position of the benzene ring and a Ph- or Me-group at the amino terminal of compound 4 increased the modifier's inhibitory activity. The results suggest that the newly introduced benzene ring interacted with the hydrophobic cavity of XO by means of the π-π stacking force between the newly introduced benzene ring and the aromatic amino acid residues, such as the Phe residue, which greatly increased the modifier's inhibitory activity. We conclude that introducing the Ph-group at the amino terminal of compound 4 and the OH group at the para position of the benzene ring was a good route to obtain novel XO inhibitors. Fluorescence spectroscopy assisted by 8-anilino-1-naphthalenesulfonic acid fluorescence probing and molecular docking were helpful for achieving a preliminary and relatively clear understanding of the interactions between target compounds and XO, which deserve further study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.